




# AIR COOLING MACHINES

## The application

During the process of extracting coal from the soil underground or while advancing through the mountain during construction of tunnels, the generated heat needs to be taken out to the surface and dispensed into the atmosphere away from its original source.

We differentiate here between centralized and de-centralized cooling systems. Decentralized systems are efficient and most economical if cooling is only needed at a few points far apart from each other.

Our compact design enables you to move the units along with your shredders through the ground. They work with a high coefficient of performance and do not require sophisticated water pipe insulation. The systems are low maintenance and designed to be repair-friendly, therefore more robust and reliable.





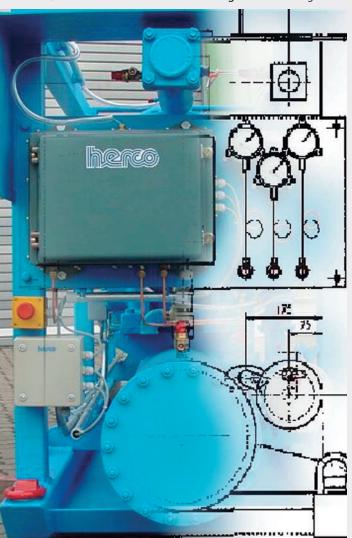




### Concept

In general terms the atmosphere underground is cooled down by evaporative refrigerants in a heat exchanger (evaporator).

The main unit consisting of a compressor, condenser, and instrumentation, elevates


the pressure of the refrigerant. The heat and pressure that is adsorbed during this process will be transported via pipeline to the water heat exchanger, the so-called condenser. Here the gaseous refrigerant condenses and the expansion valve lowers the pressure. The Freon now is injected into the evaporator where it exchanges the heat between the air and the refrigerant.

The heat that has been transferred to the water in the water cooled condenser can easily be transported via pipe above ground and exchanged either with fresh water, river water,

ground water, or through a recooler-unit.

#### **General Assembly**

The two-component air cooling machine consists of: Machine unit incl. compressor, electrical motor, condenser, control unit and our standard 5m distance positioned evaporator. The evaporator is specially designed for extreme high concentration of dust. The re-cooling unit exchanges the



heat, which is being absorbed under ground through water spraying system and forced air. The re-cooling unit consists of copper plates. The large distance between the copper plates and the water spraying system, for cleaning, provides longevity even if the dust concentration is extremely high. Compressor and evaporator are protected by a solid frame and housing. They are connected through flexible stainless steel piping, whereas the re-cooling unit is connected through uninsulated rigid piping.

### **Control and Safety**

The evaporation pressure via an internal hydraulic capacity system controls the output of the compressor. Pressure and temperature safety switches control the refrigerant circle and the oil pressure in the compressor. In addition, the compressor and the condenser are protected by a safety valve.

# Planning, Construction, Installation, Commissioning and Maintenance

Our units range from 50 to 500 kW cooling capacity. The integration of our machines into your existing systems as well as the design, manufacturing, and commissioning is all performed by our trained Herco staff.

The most integral parts, such as heat exchangers, electrical panels (including software package), are designed and built at our facility in Wesel, Germany.

Reliable, long-term partners in the industry supply major parts such as compressors and various other components. Total overhauls of existing units are carried out at our facility.

Our staff can either do maintenance and repair or we can offer training to your maintenance crews and the units can be maintained in house.

| Туре    | - Refrig. capacity - Motor capacity | <ul><li>Air volume flow</li><li>Pressure drop</li></ul> | Cooling water flow | Dimensions:  - Machine part  - Evaporator |
|---------|-------------------------------------|---------------------------------------------------------|--------------------|-------------------------------------------|
|         |                                     |                                                         |                    |                                           |
| WEK 230 | 230 kW<br>75 kW                     | 5,5 m³/s<br>1200 Pa                                     |                    | 3200/800/1200 mm<br>3100/650/1150 mm      |
|         |                                     |                                                         |                    |                                           |
| WEK 280 | 300 kW<br>90 kW                     | 7,5 m³/s<br>1200 Pa                                     |                    | 3200/800/1200 mm<br>3100/840/1150 mm      |
|         |                                     |                                                         |                    |                                           |
| WEK 350 | 370 kW<br>110 kW                    | 10 m³/s<br>1200 Pa                                      |                    | 3200/840/1400 mm<br>3100/1120/1150 mm     |
|         |                                     |                                                         |                    |                                           |
| WEK 450 | 460 kW<br>132 kW                    | 15 m³/s<br>1200 Pa                                      | 32 m³/h            | 3200/840/1400 mm<br>4000/840/2200 mm      |

Inlet temperature cooling water: 20°C

Inlet temperature air 32° C/75% humidity



Rudolf-Diesel-Straße 28 D-46485 Wesel

phone +49 (0) 281/95277-0 fax +49 (0) 281/95277-26 email: info@herco-gmbh.com internet: www.herco-gmbh.com